Changing Packaging Trends and the Impact on Test

E. Jan Vardaman, President and Founder

- Track Innovation
- Identify Trends
- Analyze Growth
- Influence Decisions

Relevant, Accurate, Timely
Package Evolution: Move to Advanced Packaging

Source: TechSearch International, Inc.
Package-on-Package (PoP) Development: Driven by Test?

- Individual packages stacked on top of each other
 - Separate package for logic
 - Separate package for memory
 - Packages are individually tested and then stacked
- Prior to PoP development, memory and logic stacked together in single package for mobile phone applications
 - Difficult for logic maker TI because memory had to be purchased as bare die, as a commodity price could change
 - PoP allowed standard footprint to be developed and memory tested and supplied to OSAT or logic die maker
- Still using versions of PoP today
Connected World: Driving New Package Options

- Healthcare
- Sports and fitness
- Industrial automation
- Automotive electronics
- Security for home, office, industry, etc.
- Home automation
- Entertainment
- Transportation
- Energy production
Smartphones Control Connected Devices

- **Smartphones play a key role**
 - Tool with diverse wireless connectivity and sensors
 - Pressure on package design and cost

- **Connecting with cars for safer driving**
 - Hands- and eyes-free communication
 - Navigation and traffic flow
 - Driving pattern detection
 - OBD data and alerts

- **Industrial and enterprise leveraging consumer technologies and vast smartphone installed base**
 - Real-time process and production monitoring
 - System diagnostics and configuration
 - Business interaction in retail space

- **Medical products using signal to smartphone for body monitoring**

- **Home security control and energy monitoring**
Wearable Products

- Health and fitness tracking bands including pedometers
- Watch products
- More fashionable device to provide monitoring of elderly patients
 - Monitor blood pressure
 - Levels of hydration
- Contain many sensors to accurately calculate
 - Heart rate
 - Blood pressure (need higher accuracy) and blood flow
 - Glucose levels
 - Pulse, motion sensing, etc.

Source: Apple
Low-Power Optimized MCU for Fitness Band

- **Trade-off in design is power vs. performance (design is key)**
- **Processor is constantly analyzing data from sensor**
- **Device does not get to go into “sleep mode”**
- **Improved battery life becomes key to product success**
SiP Key for Connected Smart Systems and Wearables

- μC firmware design
- Low power μC core design
 FPGA as tool
- Wireless connectivity
 (for 2nd generation)
- Advanced packaging (SiP | WLCSP)
- SW algorithms*
 (gesture, well-being, ...)
- ASIC design, SystemC models
- MEMS design/technology
 (SiP | WLCSP)

Connected smart systems require new competences

Source: Bosch.
What is System-in-Package (SiP)?

SiP:
two or more dissimilar die assembled into a standard package; can include MEMS, sensors, passives, filters, antennas; forms a functional block

- "Any combination of one or more integrated circuit(s) of different functionality; may include passive components, embedded technology (such as actives/passives in a substrate), antenna or compartmental shielding, and/or MEMS"

- "Multiple die plus components integrated into one package"

- "Hybrid solution for system integration"

- "Multichip modules with interconnect including wire bond, flip chip, stud bump, or embedded die with associated passive components (placed on top/or both sides of the substrate but connected as SBA)"

- "Two different functional devices in one package"

- "Integration of semiconductor devices of different functionality into one package of various formats or any other SMT type package"

- "Combination of active electronic parts having different functions packaged as single unit, which can perform multiple functions associated with system or sub-system."

- "A semiconductor package integration technology that integrates subsystem functional blocks, ICs (possibly discrete devices) and passive components in a standard package platform; laminate, leadframe or ceramic substrate, often molded and surface mounted onto a system PCB assembly as an LGA or BGA"

- "Package or module that contains a functional electronic system or sub-system that is integrated and miniaturized through IC assembly technologies"

- "Multiple layers of components with full function within a chip stack"

- "A substrate-based package (semiconductor package, module) with one or more active components (ICs, transducers, MEMS, sensors), at least two of the various components on the substrate perform different functions"

- "Blending of 2 (or more) levels of assembly into a single package such as flip chip plus a packaged part; integration of two different functional capabilities"

- "An active die with some passives"

© 2016 TechSearch International, Inc.
Many Drivers for SiP

- Miniaturization—form factor such as package height, footprint
- Heterogeneous technology integration—different device types such as RF, analog, memory
- Mixed process technology assembly—die fabricated on different silicon technology nodes
- System performance and optimization—improved signal integrity, reduced power consumption
- System flexibility, features, and re-configurability
- Simplification of module level test and qualification
- Total system cost reduction due to reduced system BOM and complexity, simplified product board, board layer count reduction, reduced development cost, faster time-to-market
Many Formats for SiP...

- Land grid array (LGA)
- Ball grid array (BGA)
 - Wire bond
 - Flip chip
- Fine pitch BGA (FBGA) or Laminate CSP
 - Wire bond
 - Flip chip
- Fan-out WLP (FO-WLP)
 - Multiple die with passives
- May include WLPs inside
 - Broadcom WLP in Murata WiFi module
- Leadframe packages
 - Routable QFN
 - MIS-BGA
- Ceramic substrate packages (CLGA)
- Silicon interposers for high-performance systems
SiP: Key to Connected Devices

Intel Curie Module
- Low-power, 32-bit Intel Quark™ MCU
- 384 kB flash memory, 80 kB SRAM
- Low-power, integrated DSP sensor hub and pattern matching technology
- Bluetooth low energy
- 6-axis combo sensor with accelerator and gyroscope
- Battery charging circuitry (PMIC)

Renesas and Link Labs radio module for machine-to-machine communication
- Renesas microcontroller
- Semtech long distance radio transceiver
- Applications including security monitoring, agricultural monitoring, home automation, smart meters

Samsung Electronics Artik modules
- Contains processors, memory, communication chips, and software
- All essential elements for connected gadgets

Source: Samsung.
Source: Intel.
TDK’s Tiny Bluetooth Low Energy Module for Smart Watches and Other Wearables

- Bluetooth low-energy module with IC embedded into thin substrate, peripheral circuitry includes quartz resonator, bandpass filter, and capacitors on the top
- Package size of 4.6 mm x 5.6 mm x 1.0 mm
- 65% smaller than individual discrete components

Source: TDK.
TechSearch International estimates 13.3 billion SiPs shipped in 2015, almost 70% were RF and connectivity modules.

SiP is defined as functional system or subsystem with two or more dissimilar die, assembled into a standard footprint package.
RF SiP: Complex Design = Complex Text Requirements

- RF modules are a complex design that requires comprehensive test strategy
- RF modules typically contain amplifiers, switches, filters, passives, and antennas
- Heterogeneous mix of semiconductor technologies such as GaAs, GaN, SiGe, CMOS, SOI, and/or SOS
- EMI shielding typically conformal, but compartmental is emerging
- Typically packaged in LGA

Avago PA module includes FBAR 4.4 x 4.25 x 0.88mm FLGA with 18 pads

Murata WiFi 802.11/ Bluetooth / FM Radio module 9.8 x 7.5mm LGA with 58 pads
Drivers for WLP

• Major applications for WLP......
 – Smartphones (highest volume application)
 – Digital cameras and camcorders
 – Laptops and tablets
 – Medical
 – Automotive
 – Wearable electronics such as watch

• WLP meets system packaging needs
 – Small form factor
 – Need for low profile packages
 – Lower cost (less material)

• Form Factor is key
 – Low profile
 – Limited space on PCB

Source: TPSS.
It’s Not Just iPhones with Lots of WLPs……

- **Samsung smartphones with WLPs**
 - 6 years ago, no WLPs
 - Galaxy 6S has 13 WLPs on main board

- **Japanese domestic smartphones**
 - Sony Xperia Z4 has 13 WLPs
 - Sharp Aquos Zeta has 13 WLPs

- **China handset makers increasingly using WLPs**
 - Huawei Asend G620S has 4 WLPs
 - ZTE Goophone has 3 WLPs
 - Even low-end OPPO Joy has one….

- **On average 5 to 7 WLPs per smartphone and the numbers continue to increase……**
Conventional WLP Applications

- **Conventional WLPS for many device types (analog, digital, sensor, discrete)**
 - Power management IC (PMIC)
 - Audio CODEC
 - RF
 - IPD, ESD protection, filter
 - LED driver
 - Electronic compass
 - Controller
 - MOSFET
 - CMOS image sensors
 - Ambient light sensors
 - EEPROM

- **Conventional WLPs trends**
 - Highest I/O counts and largest body size PMICs
 - Increasing number of 0.4mm pitch parts, some 0.35mm pitch
 - Fine pitch parts need high-density PCB to route signals

Source: ASE.
WLP Process Flow (Conventional Fan-in)

1. Bumping
 - Wafer Fab
 - PI / UBM
 - Back Grinding
 - Laser Mark
 - Ball Mount
 - Optical Inspection
 - Wafer Mount
 - Singulation
 - Optical Inspection
 - Optical Inspection

2. TEST
 - Pre-Bump Probing
 - Bump Wafer Probing
 - Sawn Wafer Probing

3. WLCSP Backend
 - Pick & Place
 - Tape & Reel
 - Drop Ship

Source: OSAT.
Fan-In and Fan-Out WLP Compared

Conventional WLP (Fan-In)

Fan-Out WLP (package footprint larger than die)

Source: STATS ChipPAC
FO-WLP

- **Smaller form factor, lower profile package**
 - Similar to conventional WLP in profile (can be ≤0.4 mm)
 - No substrate
- **Support increased I/O density**
 - Fine L/S (10/10µm)
 - Roadmaps for <5/5µm L/S, future 2/2µm L/S
- **Split die package or multi-die package/SiP**
 - Multiple die in package possible
 - Die fabricated from different technology nodes can be assembled in a single package
 - Can integrate passives
- **SiP applications**
 - Radar modules for automotive electronics
 - Connectivity modules for smart home

Source: STATS ChipPAC.

Source: Freescale Semiconductor.
Applications for FO-WLP

- Baseband processors (in production many years)
- RF transceivers, switch, etc.
- Power management integrated circuits (PMIC)
- Connectivity
- Radar module for automotive
- Near field communication (NFC)
- Audio CODEC
- Security devices
- Microcontrollers
- Memory (top PoP)
- NAND memory controllers
- Application processors
- Many multi-die configurations

NXP Radar Module

Source: NXP.

Intel Wireless Division

LTE analog baseband
5.32 x 5.04 x 0.7mm eWLB
127 balls, 0.4mm pitch

Source: TPSS.

Marvell PMIC & Audio CODEC

Source: Nanium.
Potential RF, PMIC, CODEC and AP, Migration to FO-WLP

- Modem FCBGA-333
 Qualcomm MDM9625M

- RFIC WLP-164
 Qualcomm WTR1625L

- RFIC WLP-66
 Qualcomm WFR1620

- Audio codec
 WLP-42
 Cirrus 338S1201

- WiFi/BT/FM
 FLGA-58
 Murata 343S0694

- A-CPU PoP-1155
 Apple/TSMC APQL-

- M8 Co-pro. WLP-40
 NXP LPC18B1UK

- PMIC WLP-94
 Qualcomm PM8019

- PMIC FCBGA-267
 Dialog 338S1251

- PMIC WLP-28
 Qualcomm QFE1100

Source: TPSS.
Application Processor Packaging Trends: FO-WLP

• Thinner package and smaller footprint
 – Today 1.0mm height requirement
 – Future ≤0.8 mm

• 3D IC with TSV provides the ultimate in package height reduction, best electrical performance, but continues to be pushed out (thermal, cost, business issues)

• Silicon interposers too expensive for many mobile products

• PoP in high-end smartphones
 – Option 1: Continue with FC on thin substrate
 – Option 2: Embedded AP in bottom laminate substrate
 – Option 3: Fan-out WLP with application processor as bottom package
 – Option 4: Some new format (RDL first/chip last, SWIFT, etc.)
Why is FO-WLP A Disruptive Technology?

- **No substrate**
 - Thin-film metallization used for substrate (can go below 5µm L/S)
 - No traditional laminate substrate (most application processors had been using laminate substrate with flip chip bump interconnect)
 - No traditional underfill
 - Removes substrate supplier as design partner

- **Infrastructure changes**
 - All packaging can take place at the foundry
 - Assembly can also take place at OSAT but uses a non-traditional OSAT assembly line
 - Requires IC/package co-design
 - Moving forward, test has to be done while still in wafer format

Source: Nanium.
How to Achieve Cost Reduction with FO-WLP?

- Customers demand continuous cost reduction
 - Lower ASP for semiconductor devices
 - Lower assembly prices for OSATs
- Is some form of die-last process the answer?
- Is panel processing the answer?
- Is 450mm reconstituted wafer the answer?
- How do we test?
Amkor’s SWIFT™

- **Target Markets**
 - Mobile, Networking
 - BB, AP, Logic + Memory, Deconstructed SoC

- **Utilizes Existing Bump and Assembly Capability**
 - Polymer based
 - Flexible
 - Multi-die and large die capability
 - Large package body capability
 - Advanced die integration
 - Stepper capability down to 2um line/space
 - Die shift / orthogonal rotation elimination
 - Down to 30um in-line copper pillar pitch
 - 3D capability
 - Package stack capability using Cu pillars or TMV

SWIFT™ Single Die Overmold

SWIFT™ 2 Die Overmold

SWIFT™ 2 Die Exposed

SWIFT™ 2 Die TMV PoP Overmold

SWIFT™ 2 Die Fan-in PoP
FO-WLP Large Area (Panel) Processing Considerations

- Technical **AND** Economic issues need to be examined
 - Economic issues include making sure sufficient volume for ROI (weekly load calculations)
 - Potential to make more scrap faster.....

- What size panel is feasible and makes economic sense?
 - Proposed panel sizes vary (no standard)
 - Panel may require large body size parts to populated (>5 mm x 5 mm)
 - Small size parts may not fill panel (may take 2 days to populate panel)

Source: Fraunhofer IZM.
FO-WLP Large Area (Panel) Processing Considerations

- **Dielectric dispense methods?**
 - Spin coat? Other methods such as dry film lamination, slot coat, etc.
 - Need inspection for even coating?

- **Molding materials and process?**
 - Low CTE material
 - Low process temperature (higher process temperature = more moving around)

- **Metal plating**
 - Metal to dielectric interface (what inspection requirements?)
 - How to sputter seed layer?

- **Interconnect reliability?**
- **Inspection for broken metal traces etc.**
FO-WLP Large Area (Panel) Processing Considerations

• Assembly of die on panel
 – Die placement accuracy may be more difficult to control with large panels (size matters)
 – Large area bonders may be required (depending in the size of the panel)
 – Throughput (time required to pick and place die in panel)
 – How is placement accuracy impacted by tape and mold compound?
 – What level of inspection is required to verify accuracy? What speed?

• Singulation method?

• Solder ball placement and inspection method?

• How do we test in large panel?
 – Back to singulated package test?
 – Some new test method?
Conclusions

• Advanced packaging continues to grow
• Connectivity and mobile applications driving SiP adoption
• Mobile products require low profile packages that meet performance needs
 – Fan-in WLP
 – FO-WLP
• Shrinking technology nodes => shrinking die => less area for I/O (if pitch does not shrink)
 – Drives migration from Fan-In to Fan-Out WLP
• Single and multi-die packages with FO-WLP
• FO-WLP is a disruptive technology
 – Introduction will have impact similar to Intel’s introduction of Cu pillar bump
• Demand for low-cost packaging solutions drives adoption of new package designs and formats
 – New chip last packages?
 – Panel-level processing?
 – Test considerations will be essential
Thank you!

TechSearch International, Inc.
4801 Spicewood Springs Road, Suite 150
Austin, Texas 78759 USA
+1.512.372.8887
tsi@techsearchinc.com

RELEVANT, ACCURATE, TIMELY